

Development Guidelines

This set of pages holds general guidelines and orientation for the development
of software projects. All projects must follow all the rules from these
guidelines.

Table of Contents

	1. General Guidelines
	1.1. Simplicity

	1.2. Pragmatism

	1.3. Quality

	1.4. Craftsmanship

	2. Processes & Practices
	2.1. Business Orientation

	2.2. Guideline Enhancement Proposal

	2.3. Code Review

	2.4. Pair Programming

	2.5. Continuous Integration

	2.6. Deployment

	2.7. Scheduled Maintenance

	2.8. Service Unavailability and Disaster Recovery

	2.9. References

	3. APIs (WIP)
	3.1. Design

	3.2. Specification and Documentation

	3.3. HTTP, REST and Web

	3.4. Implementation

	3.5. Common Solutions

	3.6. References

	4. Architecture
	4.1. General Rules

	4.2. Microservices (or SOA) Architecture

	4.3. Integrations

	4.4. References

	5. Monitoring & Logging
	5.1. Monitoring

	5.2. Logging

	5.3. Error Reporting

	6. Implementation
	6.1. Code

	6.2. E-Mail

	6.3. Database

	7. Books

Document Conventions

We use keywords like “MUST”, “MUST NOT”, “REQUIRED”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” with the same definitions as the
RFC 2119 [https://www.rfc-editor.org/rfc/rfc2119.txt].

Machine-readable text, such as code, URLs, protocols, etc are represented with
monospaced font (eg. HTTP method POST). We use {} to delimiter template
variables in samples and # as a comment mark:

This is a comment
https://api.example.com/account/{account-id}

General References

A list of documents and sites we use to produce our guidelines.

Handbooks

	Basecamp Handbook [https://github.com/basecamp/handbook]

	Gitlab Handbook [https://about.gitlab.com/handbook/]

	Valve Handbook [http://www.valvesoftware.com/company/Valve_Handbook_LowRes.pdf]

Development Guidelines

	Plataformatec [http://guidelines.plataformatec.com.br/]

	Terraform Recommended Practices [https://www.terraform.io/docs/enterprise/guides/recommended-practices/index.html]

Architecture Patterns

	Azure Architecture Center [https://docs.microsoft.com/en-us/azure/architecture/]

Culture Books

	Netflix Culture [https://www.slideshare.net/reed2001/culture-1798664)(deprecated]

	Disqus Culture [https://www.dropbox.com/s/u6suqbbk2w1vbwz/Disqus%20Culture%20Book.pdf]

	Loadsmart Culture [https://github.com/loadsmart/culture]

1. General Guidelines

1.1. Simplicity

We appreciate simplicity. Simple does not mean simplistic. It’s hard to achieve
simplicity because it demands a lot of thinking about the problems and
solutions.

1.2. Pragmatism

We are pragmatic about our choices. We will never adopt a solution without a
strong rationale about the decision.

1.3. Quality

Quality vs fast-delivery is not a dilemma. We use agile practices to handle
this kind of situations.

We cut solution scope, make partial delivery with high quality or try to
design an alternative solution that enable an easy refactoring in the future.

In fact we cannot neglect quality but we try hard to deliver on time because
we are a business oriented team.

1.4. Craftsmanship

We believe strongly in the Software Craftsmanship [http://manifesto.softwarecraftsmanship.org] movement and in their
manifesto.

As aspiring Software Craftsmen we are raising the bar of professional
software development by practicing it and helping others learn the craft.
Through this work we have come to value:

	Not only working software, but also well-crafted software

	Not only responding to change, but also steadily adding value

	Not only individuals and interactions, but also a community of
professionals

	Not only customer collaboration, but also productive partnerships

	That is, in pursuit of the items on the left we have found the items on the
right to be indispensable.

 2. Processes & Practices

2. Processes & Practices

Guidelines for development processes and practices.

2.1. Business Orientation

A developer must go beyond software development. It’s required that developers
understand our business and its problems to create better solutions for it.

2.2. Guideline Enhancement Proposal

None of the guidelines in this document are immutable, but whenever a change or
improvement is required, just fill in an Enhancement Proposal at our internal
Wiki and follow the process described at GEP-0000 until approval (or
rejection).

You can use GEPs to propose technical solutions to common problems.

2.3. Code Review

Code Review is a must-have discipline that improves the quality of our software
and, mainly, spread the knowledge about our platform across the team. No code
goes to production without passing the code review process.

To make a good code review we must pay attention to the following aspects:

	Be propositional in the reviews

	It means that instead of saying “your code is poorly done, redo this”, it’s
better to say “your code does not cover such and such scenarios, you probably
will need to implement these new behaviors”. Assume you got it wrong: Always
remember that you are reviewing the code, not the human behind it. Always
ensure you are addressing the code, not the author. If something looks strange
or wrong, always assume you did not understand it and ask for
clarification.

	Defend your arguments, but do not forget you can be wrong.

	Whenever giant egos meet each other, it makes people disperse from main goal
of interaction. In our case, the goal is to solve some business problem or
opportunity with software. So to avoid unnecessary conflicts and keep the
whole team focused on what matters, be careful when choosing your arguments’
wording and the way you criticize others in code reviews. Practical example:
instead of saying “this feature or code is irrelevant”, it would be better to
say “I do not understand why we’re prioritizing this feature right now, could
you explain?”. It’s OK to agree or disagree. We all have our own preferences
and tastes. Look for a middle ground and remember that you own the code as
much as the other person on your team.

	Communicate with other people, not with your computer screen.

	This is completely basic, but especially working remote, sometimes we do not
realize that we are talking and interacting with other people. Greeting and
being kind can be a great way to get the reviewers’ attention to your code.
It’s always good to remember that written communication is hard. Even with extra
care, someone could misunderstand something. So, instead of assuming
something, just ask twice before you choose not to be polite. Be human.

	Show mistakes, make suggestions but also praise good code.

	If you see some improvement to the code you are reviewing you should make
suggestions for improvement. If you see something wrong with code, request a
fix. If you learn something with code or if the code shows quality and good
practices, praise it.

Pull Requests

We use Github Pull Requests as a tool for code review.

	Make pull requests as small as possible while still delivering value.

	Pull requests with a lot of changes usually are left behind by reviewers.
Whenever the change involves too many files or lines, split it in smaller
changes and open more than one pull request. You can still open several pull
requests that are dependent on each other and work to approve one at time
sequentially;

	Provide relevant and important information for your reviewers.

	A reviewer needs to find all relevant and important information to review the
code in the Pull Request description. Although we can link issues from
bug/task systems, it’s much mentally easier and inviting for the reviewer to
find all information directly in the PR description. At the same time, do not
over describe the PR nor be too wordy. Remember that the reviewer still needs
to read all the code that you submit (no one told you that it would be easy);

	Try to deliver the best code possible from the very first Pull Request.

	Sometimes the idea of submitting a PR with a code that isn’t very good can be
tempting, since it will be reviewed and you will have other chances to
improve it. Poorly implemented or too complex code will only result in
negative reviews and more iterations (review, request, change, submit). It
will demand more time of the whole team, it will make the process more tiring
and probably the final code produced will not be so good;

	Use the GitHub compare feature to get feedback instead of opening “WIP” Pull Requests.

	It’s very usual to request some pair feedback about the code you’re making.
However, you do not need to open a new Pull Request labeled “work in progress”
to do it. Use the GitHub compare feature, in which any branch can be compared
to the master branch. For example: if you pushed your code to a new remote
branch called my-feature in foobar-api repository, the compare link
would be https://github.com/[org]/foobar-api/compare/my-feature.

	Work to have your Pull Request merged.

	The developer who opened a Pull Request (the author) cannot merge it, but it
is his responsibility to get it merged, so the author must argue in favor of
their Pull Request with the other developers to convince them to merge it. All
Pull Requests require at least two approvals to get merged, but at least one
of these approvals must come from a member of another team or squad. If a
reviewer wants to block a merge, the “Request for Changes” GitHub feature must
be used, otherwise Pull Requests with two approvals can always be merged.

Pull Requests labels

	do-not-merge

	If your Pull Request has other PR as a dependency or the changes need to be
deployed in a specific time, mark it with the do-not-merge label. Pull
requests in do-not-merge still need to be reviewed, but CANNOT be merged.
You can use this label in Pull Requests with migration code which deployment
cannot be done immediately;

	wip

	If one of your opened Pull Requests has a change request that will take time
to implement, mark it as a wip so reviewers will understand that still has
work being done. Important: use it wisely, because it’s an exception, not a
practice.

Commit Messages

Commit Messages must be written in english using the imperative mode in the
summary line:

Fix order cancellation bug #123
Add new publication status (sent)
Change Order.is_active() behaviour in case of blocked status

You can read more about good commit messages in the following articles:

	https://github.com/erlang/otp/wiki/Writing-good-commit-messages

	http://chris.beams.io/posts/git-commit/

2.4. Pair Programming

We encourage pair programming as a practice that improves solution design,
speeds up the integration of new developers into the team, and allows more
experienced programmers to help those with less experience.

Although we encourage Pair Programming, we don’t require it and won’t force
anyone to do it.

2.5. Continuous Integration

All code submitted to a Code Review and merged at master branch of a repository
must pass all checks and tests under our Continuous Integration environment.

Our continuous integration must run the following checks:

	Run all automated tests;

	Check Coding Style;

	Run linters to check the presence of credentials, debugging artifacts, etc.

2.6. Deployment

Todo

procedures for deployment, deployment follow-up, production readyness
(monitor, backup, credentials, etc), checks, etc

Continuous Deployment

Todo

procedures for deployment, deployment follow-up, production
readyness (monitor, backup, credentials, etc), checks, etc

2.7. Scheduled Maintenance

Todo

TODO

procedures for scheduled maintenance...

2.8. Service Unavailability and Disaster Recovery

Todo

TODO

procedures (maintenance mode on, communicate stakeholders, turn queue
consumers off, recover data from objects history when it exists, recovery
remaining data from backups, put services back, maintenance mode off,
communicate)

2.9. References

	Anatomy of a Code Review [https://speakerdeck.com/asendecka/anatomy-of-a-code-review]

	Yelp Code Review Guidelines [https://engineeringblog.yelp.com/2017/11/code-review-guidelines.html]

 3. APIs (WIP)

3. APIs (WIP)

Application Public Interfaces (API) are channels through which multiple software
components communicate. A good API provides efficient communication between
components and is easy to be used by the developers that create these components.

This chapter provides guidelines for creating APIs with these characteristics
for services. If you need more informations about APIs in the context of
libraries take a look at chapter Libraries and APIs.

This chapter is based mostly on guidelines created by PayPal [https://github.com/paypal/api-standards], Google [https://cloud.google.com/apis/design/], and
Microsoft [https://github.com/Microsoft/api-guidelines/blob/vNext/Guidelines.md]. If you have some question about one subject not covered here, we
recommend these documents as a further reference.

Todo

This chapter contains only the Table of Contents with the topics that will
be covered.

3.1. Design

	Design First (required)

	Aspects:

	Ease of use

	Single Responsability (loose coupling, encapsulation, cohesion etc)

	Robustness (consistent, stable, contract-based etc)

	Security

	Design Methodology

	Top-Down (from client to API) (recommended)
	Use the client use cases to guide your API design. When you create a
client interface you will see what informations must be shown. Therefore, you
can provide an API that returns this information in one request.

	Bottom-Up (from data models to API)

	Architectural Styles for Service APIs

	REST (recommended)

	CQRS

	RPC (XML-RPC, SOAP etc)

	GraphQL

	Hypermedia (optional)

	Naming Conventions and Standards

	Resource

	Resource is more than a data model

	A list of resources is one resource

	Resource Representations (serializers, Content-Types etc)

	Resource Location (URL)

	Schema

	Flat is better than nested

	Versioning

	API Lifecycle

	Deprecation policy

	Future proof APIs

	Designing extensible APIs

	When you decide to create a boolean “flag” on your resource, stop and
think again. Is it possible to change this binary parameter on a
variable parameter?
Eg. free_shipping=True. Free shipping does not exist. There is someone
paying for this shipping. Why not model configuration like:

{
 ...
 "shipping_payment": [
 {
 "payer_type": "seller",
 "rate": 0.5
 }, {
 "payer_type": "carrier",
 "rate": 0.2
 }
]
 ...
}

to tell application that seller will pay 50%, carrier will pay 20% and
buyer will pay 30% for the shipping.

	Backward compatible modifications

	Backward incompatible modifications

	Multiversion selection and management

	Company-specific API Philosophy

	HTTP shines! Use it.

	Postel’s Law of Robustness

	Reactive APIs
	Create APIs that “reacts” to events. Eg. If we set the field “approved_at”
with a timestamp in one order it’s clear that it must be transitioned to
“approved” status. Same for “invoiced_number” -> “invoiced”. Do not allow
forced transitions like PATCH /order/id {“status”: “invoiced”} or pass
multiple arguments to do this transition like PATCH /order/id {“status”:
“invoiced”, “invoiced_at”: ..., “invoice_number”: ”...”} (this use case is
extremely error prone).

	Future proof

	Check, recheck, double check and check again for every “status” and state
machines on resources. There are lots of “gotchas” on state names and
transitions.

3.2. Specification and Documentation

	Specification Tools
	Swagger

	Pactum

	Documentation
	Types of documentations
	Usage Manual

	Tutorials

	Use Cases

	Reference

	Implementation Documents (private)

	Tools
	Pactum Documentation toolchain

	Sphinx

3.3. HTTP, REST and Web

We love the Web and HTTP protocol. The simplicity of the concepts like
Resource/Document, Resource references hyperlinking (through URL), and the
stateless model of Request/Response forces the result of solutions design to
be simple (but not simplistic). We believe that RESTful APIs embraces this
simplicity.

	Resource Representations

	JSON

	Protobuf

	HTML (required for “Web APIs”)

	Resource Locators

	No trailing slash at URL path: /resources instead of /resources/ (backward
incompatible, support HTTP 307/308 redirects on server and clients)

	Resource names on path must use plural for collections and singular for
single resources. (backward incompatible)

	Web is an API, Web as an API

	Request

	Methods

	HTTP Headers

	Data model and representation (serialization)
	Data types (date, timestamp, status enum, nil/null etc)

	Company “way of REST”
	Path version selector

	Filtering (querystrings)

	Searching (querystrings)

	Pagination (querystrings)
	Always set a default and a max limit for limit and page size

	limit/offset (required)

	page/pagesize (required for “Web APIs”)

	Hypermedia links to “next” and “previous” pages

	Fetch control (querystrings)

	Bulk Requests support with multipart content

	PUT As Create

	Asynchronous Request/Response

	Custom HTTP Headers support
	X-HTTP-Method-Override

	X-Request-Id

	Idempotent POST, PUT and PATCH (303/304)

	JSON PATCH support

	Response

	Status Code

	Ranges

	Allowed Status Codes and their Usage

	Method x Status Code Mapping

	HTTP Headers

	Error response data model

	i18n & l10n

	Error messages must be returned based on Accept-Language request
header for error messages or resource data translation (eg. Product name
translation). It’s recommended to return the original message template
string and error data inside separated object to allow client developers
to create custom translations:

No Accept-Language or unknown language
400 Bad Request
{
 "length": [
 {
 "message": "Invalid minimum length 6.3in",
 "error": {
 "message_template": "Invalid minimum length {size}{unit}",
 "data": {
 "size": "6.3",
 "unit": "in"
 }
 }
 }
]
}

Accept-Language: pt-br
400 Bad Request
{
 "length": [
 {
 "message": "Comprimento mínimo inválido 16cm",
 "error": {
 "message_template": "Invalid minimum length {size}{unit}",
 "data": {
 "size": "6.3",
 "unit": "in"
 }
 }
 }
]
}

Accept-Language: [weighted list of languages]
... most weighted language available ...

	Hypermedia

	Link description and relations

	Links Array

	Company-specific standards

	Asynchronous Request/Response
	Sync vs Async with state control to keep response time low

	Not Found instead of Forbidden for anonymous access

3.4. Implementation

	Response time
	Fast is better than slow

	Execute performance and load testing in all endpoints of API before every
deployment

	Default maximum response time constantly checked on monitoring

	Avoid caches. Again, avoid caches. If it’s required your app must also work
without it (slow response time instead of errors)

	Security (SSL, auth&auth etc)

	Protection (throttling, DDoS protection etc)

	Implementation details protection (hide database sequential pk from URLs,
don’t return database errors on error messages, never run debug mode on
production environment etc)

	Event triggering

	Deployment checklist

Denormalization and Data Sync

Todo

write this topic...

3.5. Common Solutions

Standard techniques to solve common problems:

	Use PUT-as-create with an client-side generated ID to fix duplicated resource

	creation caused by double-clicked issues on client web application.

	Use status fields to manage workflows of objects that need to be processed on
multiple steps.

3.6. References

API Design Guidelines

	PayPal API Standards [https://github.com/paypal/api-standards]

	Google Platform API Design Guide [https://cloud.google.com/apis/design/]

	Microsoft API Guidelines [https://github.com/Microsoft/api-guidelines/blob/vNext/Guidelines.md]

	Zalando RESTful API Guidelines [https://opensource.zalando.com/restful-api-guidelines/]

	PayPal security guidelines and best practices [https://developer.paypal.com/docs/classic/lifecycle/info-security-guidelines/]

	Interagent / Heroku API Guidelines [https://github.com/interagent/http-api-design]

Articles

	The definitive guide for building REST APIs [https://medium.com/clebertech-en/the-definitive-guide-for-building-rest-apis-f70d37b1d656]

 4. Architecture

4. Architecture

Important

Ready for revision.

Good architecture is a important subject. This section will describe some
guidelines that must be followed when architecting a product or solution.

4.1. General Rules

Minimal Dependencies

	Reduce the number of requirements and components for a project. Less “moving
parts”, less complexity. Less complexity, less bugs.

	Resist the temptation to add another element to the solution stack.

	Limit the use of new tools to occasions where current tools are insufficient.

	Adopt new tools only when they are beneficial to the project.

	Prefer third party (managed) tools in cases where the solution is not part of
our core business. Example: if you need a solution for message queueing prefer
using AWS SQS instead of make a RabbitMQ deployment.

Auditability

	All transactions need to be traceable. We need to know When (timestamp),
Who (user), and Where (source) started What (transaction).

	Transactions must be uniquely identified (transaction_id) through all
components of platform.

	Transaction identifier must be present in all logs (see
Logging).

	It’s important to make a distinction between Transaction ID that relates with
a business transaction (eg. product approved by moderation) and Request ID
that relates with a implementation detail (HTTP request).

4.2. Microservices (or SOA) Architecture

We deploy products and solutions as a bunch of highly specialized and reliable
services that communicate each other using messages.

After some time deploying this kind of service we have detected some building
blocks and patterns for architecture.

Building Blocks

Message

Messages are the base building block of our architecture. Every service
communicate with each other using messages.

[image: left to right direction skinparam handwritten true file message]

Messages follows a common contract and must be serialized using a open-standard
serializer like JSON or Protobuf. You can wrap this messages with some metadata.

Component

Component is a service or API that receive, processes and triggers events.
It’s implemented and deployed as software processes.

[image: left to right direction skinparam handwritten true agent component]

Topic

Our architecture use topic as a location where components send messages
(Publishers) that would be listened by other components that subscribes to it
(Subscribers).

[image: left to right direction skinparam handwritten true skinparam agent { BorderColor #808080 BackgroundColor #ffffff FontColor #808080 } () topic agent component component --> topic]

Topics belongs to the platform, ie, any component can post messages because they
are public (to the platform) and global.

Queue

Every component that needs to listen for messages published on topic (see
Topic) must use a queue as a topic subscriber.

[image: left to right direction skinparam handwritten true skinparam agent { BorderColor #808080 BackgroundColor #ffffff FontColor #808080 } skinparam interface { BorderColor #808080 BackgroundColor #ffffff FontColor #808080 } agent component interface topic topic -(0)-> component: queue\n]

Queues belongs to the component (eg. Service or
Broker) that subscribes a topic. Unlike topics, queues are
private and local to the component that consume its messages.

It is very common that different components listen to the same topic.
Assigning one queue to each component and knowing that each queue receives a
copy of the published message we can guarantee that one component won’t process
other components messages.

Storage

Storage is the location where we store validated and consistent data.

[image: left to right direction skinparam handwritten true skinparam agent { BorderColor #808080 BackgroundColor #ffffff FontColor #808080 } agent component database storage component --> storage]

We usually use relational databases (see Database) to store data
at our platform.

We ❤️ PostgreSQL, a lot (you should not use anything different).

Patterns

We can connect the building blocks above to create patterns with specific
responsabilities in our architecture.

API

The APIs are the channels which data is inserted and retrieved from our
platform.

[image: skinparam handwritten true cloud data agent API database db interface topic data -right-> API API -down-> db API -right-> topic]

The responsabilities of an API are:

Data input and recovery

Our APIs are made available mostly using the REST model with JSON serialization
using the HTTP protocol.

Data validation (including state transitions)

All data sent to our APIs must be valid and APIs need to be able to validate
data autonomously, ie, APIs cannot request informations to other APIs (see
Denormalization and Data Sync) to validate data.

Some resources of our APIs provides fields that stores status/state info. It is
responsibility of API validate these status and their transitions.

Data persistence

The persistence/storage of data is also a responsibility of the APIs.

As we already mentioned, we use a relational database in all cases where it is
not absolutely necessary to use another type of storage.

This persistence must be wrapped by a transaction with (see
Event triggering) and rolled back in case of failures. API must
return an error in these cases. Like in the following pseudocode:

transaction = begin_transaction()
try:
 persist(object)
 trigger_event(object)
except:
 transaction.rollback()
transaction.commit()

Event triggering

Once the data is persisted APIs need to trigger an event reporting this fact by
posting a message on a specific topic (see Topic).

The payload of the event must include the content of the persisted object or, at
least, a reference to the object at an API.

You can use the following payload as an example for the content of the event
message:

{
 "transaction_id": "deadbeef",
 "object_type": "order",
 "object_id": "bb654446-22d4-4f28-ab3e-e72bebb89a8c",
 "href_template": "https://api.example.com/{object_type}/{object_id}"
 "href": "https://api.example.com/order/bb654446-22d4-4f28-ab3e-e72bebb89a8c",
 "action": {
 "type": "update",
 "changes": [
 {
 "field": "status",
 "value": "invoiced",
 "old_value": "new"
 }
]
 },
 "embedded": {
 "order_id": "bb654446-22d4-4f28-ab3e-e72bebb89a8c",
 "seller_id": "9d054c45-a72e-4878-a932-f131e92e2bf7",
 "status": "invoiced"
 }
}

	transaction_id: used to make transaction traceable (see
Auditability);

	object_type: the type of the object that received the action that
triggered the event;

	object_id: the ID of the object that received the action that triggered
the event;

	href_template: the template that you can use to generate the hyperlink
reference to the object. You can use it to generate custom URLs to access an
specific objects;

	href: the hyperlink reference to the object (for convenience);

	action: the action that triggered the event. In the example we can see a
change (update) in the order. Based on the list of changes we can also see
that the order’s status transitioned from new to invoiced;

	embedded: some fields of the object that could be directly used by other
services. These fields could be used to reduce the amount of requests to the
APIs but can also increase the payload of the messages. Use it wisely.

Idempotency Handling

In cases where one of our services make a duplicated request to our APIs it must
handle this correctly. A duplicated POST request must receive a 303 See
other response and other request methods must receive a 304 Not Modified
response.

The implementation of this handling depends on specific business rules. But
let’s look for some examples.

Sending the same POST that creates a transaction twice:

$ curl -i -X POST https://api.example.com/transaction/ \\
 -d '{"transaction_id": "deadbeef"}'
HTTP/1.1 201 Created

$ curl -i -X POST https://api.example.com/transaction/ \\
 -d '{"transaction_id": "deadbeef"}'
HTTP/1.1 303 See other
Location: https://api.example.com/transaction/deadbeef

Change an order status that is already in invoiced status:

$ curl -i -X PATCH https://api.example.com/order/XYZ/ \\
 -d '{"status": "invoiced"}'
HTTP/1.1 304 Not modified

Webhook Handler

A webhook handler resembles an API except that it does not persist data and is
not required to adhere to the APIs (WIP) guidelines.

[image: skinparam handwritten true cloud data agent API interface topic data -right-> API API -right-> topic]

Webhook handlers exists to receive notifications from external partners. It is
important that all webhook handlers work together with a scheduled job service
that retrieves notification data that was lost due to failure on notification
handling.

Service

Services (also called as Workers or Consumers) are components that process
(consume) messages. These messages are sent to queues that subscribe to topics.
You can also read this as “the services listen and process messages from
topics”.

One service consumes messages from one queue, as an input data, processes these
data and then generates an output as a publication on topic or an API request.

The simplest type of service are the ‘de-queuers’ that basically process
messages from a single queue (that subscribe a single topic).

So a service works following the steps below:

	Get one message from a queue (that subscribes a topic);

	Process this message (following/applying business rules);

	Get extra informations requesting them to APIs (optional);

	Send the result publishing it in a topic or posting one request to an API.

[image: left to right direction skinparam handwritten true agent service agent API interface source interface target source -(0)-> service: queue\n service --> API service --> target: or...]

The only reponsibility of a service is: Business Logic.

We implement most of the business logic of our platform in services. This
design allows us to keep API agnostic about specific business rules.

This approach allow our APIs to be used by other market players, and also allow
us to build services with different business rules for other markets.

Broker

Broker is a special kind of service that consumes more than one queue. We use
brokers basically to make code maintenance easier grouping several services that
interacts with, eg, one API in a single code base/deploy.

[image: left to right direction skinparam handwritten true agent broker interface source1 interface source2 interface source3 interface sourceN... interface target1 interface target2 interface target3 interface targetN... source1 -(0)-> broker: queue1 source2 -(0)-> broker: queue2 source3 -(0)-> broker: queue3 sourceN... -(0)-> broker: queueN... broker --> target1 broker --> target2 broker --> target3 broker --> targetN...]

Scheduled Job

Scheduled Jobs are services triggered by the clock (usually in a regular cycle)
to make some kind of batch action and publish the results in one topic (eg. get
all orders lost by webhook handler and publish one-by-one in a topic).

[image: left to right direction skinparam handwritten true agent job control clock interface topic clock --> job job --> topic]

Client Application

Client Applications are web (or mobile) applications which provides the means by
which users interacts with our platform.

[image: left to right direction skinparam handwritten true actor user agent client agent API user --> client client --> API]

4.3. Integrations

We’ve two kinds of integrations at our platform:

	Internal integrations: when one of our components must interact with
other component of our platform (eg. service makes a request to an API) and;

	External integrations: when one of our components must interact with
a component of other platform (eg. service makes a request to one of our
partner’s API).

On both integration scenarios we need to start from the following premisse:

No matter if a system is internal or external it eventually...

	... goes offline...

	... crashes...

	... or change their behaviour without notice.

So, to make an integration work in a reliable fashion we need to follow some
rules and procedures:

	Be prepared for the worst;

	Create a SLA for all integrations;

	Monitor (see Monitoring & Logging) all aspects of integration
(eg. errors, performance, availability, etc);

	Always use a Circuit Breaker [https://martinfowler.com/bliki/CircuitBreaker.html] pattern for
integration;

	Set a (small) timeout for requests to avoid that the client becomes blocked;

	Create a retry policy based on defined SLAs or based on informations at error
response (eg. Retry-After: HTTP header in 503 Service Unavailable
responses);

	Remember that, depending on the context, some errors are recoverable and
others are not recoverable. Handle error responses appropriately: retrying,
rolling back, logging, etc;

	All these rules and procedures must be implemented out-of-box in all services.
No code deployment must be required to handle unavailability scenarios.

4.4. References

	Some Guidelines For Deciding Whether To Use A Rules Engine [http://herzberg.ca.sandia.gov/guidelines.shtml]

 5. Monitoring & Logging

5. Monitoring & Logging

This chapter you will found informations about monitoring and logging.

5.1. Monitoring

Todo

write it...

5.2. Logging

This guildelines were built upon the concepts of 12 Factors App [http://12factor.net/logs] and Splunk
Logging Best Practices [http://dev.splunk.com/view/logging-best-practices/SP-CAAADP6].

We generate logging based on the transactions processed by the system. The
definition of transaction processing according to Wikipedia [https://en.wikipedia.org/wiki/Transaction_processing]:

Transaction processing is designed to maintain a system’s Integrity (typically
a database or some modern filesystems) in a known, consistent state, by
ensuring that interdependent operations on the system are either all completed
successfully or all canceled successfully.

Examples of transactions in diferent contexts:

	Database: database transaction (commit/rollback);

	Web Application/API: request/response cycle;

	Worker: process a message;

	Business Transactions: bill a credit card, cancel a contract.

General practices for logging generation:

	You should use the framework/language tools for logging (eg. python’s
logging module);

	You should not use print() or echo() to produce log messages;

	You must start your log entry with a timestamp using UTC timezone.

	You should use a standard output device to produce log (stdout or
stderr);

	Errors in code (programming errors) should be handled apart of business
failures (transactional failures). See Error Reporting;

	You should not produce multi-line log messages (\n) for non-debugging
logs (see Log Format).

	It’s recommended to take care about the amount and the relevance of log you
generate to avoid the blindness caused by excess of noise in logs and to
reduce the costs of storing it.

	No sensitive or private information could be logged. You should mask all
all informations that need to be protected by the Terms of Service of our
product or GDPR laws. Informations like secret keys, passwords, financial
informations, personal informations and implementation details of our system
or infrastructure (eg. database/database table names, full paths of
deployments, etc);

	We recommend that you create an unique ID for each transaction and print it on
logs to make it easy to track all sub-transactions and operations inside of a
transaction;

	You should use string representations or safely encoded strings in logs to
avoid encoding & decoding issues with non-ascii caracters;

	Production environments must enable at least INFO log-level. For staging,
and local development environments we use DEBUG level.

Logging Errors

There are two different kinds of error logs that need to be managed
separatadely. The software errors (see Error Reporting) must be
reported in a specific system for error tracking and, transactional errors, that
occurs when something goes wrong with the business rules, must be logged as a
regular log with log level ERROR (see Log Levels).

Log Format

The modern systems for log agregation offers a lot of indexing, searching, and
analytics tools to be used by developers.

To make this possible this systems recommends that we generate logs in a
structured way. That’s why we recommend you to use JSON-serialized log messages.

	Send the plain JSON-serialized string in a single line for each log record.

	The log structure must contains at least the following information:
	LOGLEVEL: the level of the log message;

	TIMESTAMP: Timestamp in asctime format and UTC timezone;

	GUID (optional) - GUID (eg. UUIDv4 string) of transaction (if
available);

	FILE/FUNCTION:LINENO (optional): file, function and line number where
the log was generated. This information must be included only in
DEBUG log level.

Log Levels

	DEBUG and/or TRACE

	Detailed information about the whole transaction and it sub-transactions. You
can print detailed and verbose information about the internal state of
transaction like variables, call trace (in cases where of TRACE is
supported), etc. It is important to take care of customers’ private data and
sensible informations. By default this log level is not enabled in live
production servers but, besides that, could be enabled for live production
debugging purposes.

	INFO or NOTICE

	Summarized information about a successfully finished transaction. You should
put one or more key information that make this transaction trackable inside
the system and you should describe what transaction executed (eg.
operation=bill credit card (capture), customer_id=XYZ123). This log level
should be enabled in live production environments. In cases where the system
generates a huge amount of data (eg. request/response log) you could agreggate
the information in batches or route the logs to an specific system that can
handle these logs in a better way.

	WARNING

	Something exceptional happened during the transaction processing but the
system was able to recover from this exception (eg. operation=bill credit
card (capture), customer_id=XYZ123, result=timeout connection (retrying #1 of
3)).

	ERROR

	The transaction failed in a way where the system could not recover itself (eg.
operation=bill credit card (capture), customer_id=XYZ123, result=failed
after all retry attempts.). Errors caused by the end user must not be logged
as a error (eg. Invalid username/password errors).

	CRITICAL

	The transaction failed and the system breaks completely due to this failure.
This error shoud be logged in but need to raise an exception to the
systems that manages error reports (see Error Reporting).

5.3. Error Reporting

Errors in code are caused by some part of the code that is wrongly created by
the developer. Usually it raises a language exception that are not handled by
the code.

You must not send these errors to the transactional logs (see
Logging).

Exception Handling Service

We use a service to capture, collect, aggregates and monitor this kind of
errors. The system we’re currently using for this purpose is Sentry [https://sentry.io].

 6. Implementation

6. Implementation

6.1. Code

Todo

good code > good doc, early optimization trap, early abstraction trap,
exception/error handling: (un)recoverable, (un)expected errors

Code guidelines and best practices.

General advices

	Always KISS - Keep It Super Simple;

	All source files must be written in English (variables, functions, classes,
docstrings and etc). Only strings submitted to customers/users should be in
in their native language (i18n/l10n);

	A code well written is self documented;

	Pay attention to the quality of your code using some indicators like
cyclomatic complexity or the presence of some Bad Smell [https://blog.codinghorror.com/code-smells/].

Coding Style

Coding style is a complex subject with lots of personal preferences and we
believe that this preferences must be respected until the limit where it causes
readability issues to other developers in our team and to keep some level of
consistency on our code base.

Usually we use the coding style proposed by the community of an specific
programming language, eg:

	Python - PEP-8 – Style Guide for Python Code [https://www.python.org/dev/peps/pep-0008/] but also consider important
writing pythonic code as in Beyond PEP-8 [https://www.youtube.com/watch?v=wf-BqAjZb8M] with some customizations (see
below).

	Go – we use the coding style applied by gofmt [https://golang.org/cmd/gofmt/] in our Go code

	Elixir - we use the coding styled applied by _mix_format [https://hexdocs.pm/mix/master/Mix.Tasks.Format.html] in our Elixir code

PEP-8 Customizations

We use most of the rules defined by PEP-8 except the rules that define the
maximun line length. Instead of 80 characters we define a soft-limit in 120
characters. You are allowed to use more than 120 characters but use it with
moderation.

Tests

Todo

expand this session (or move to a new chapter), describe some test
patterns?

	Unit test every function, method and class.

	Integration tests should assert each part called using mocks or return checks.

	Avoid using VCR-like mocking system. VCR-like libraries store credentials used
for tests in fixture files and it creates a security breach. The fixtures
created by them are strongly dependent of the API state, making it hard to
update the test in the future.

	We don’t use test coverage as a metric, but as a way to find use cases not
tested.

	Features with multiple layers should be tested on all layers (an API endpoint
should have tests in the manager level (focused in the data) and API level
(focused in correct HTTP usage)

Configuration

Todo

move this session to other chapter?

	Configuration through environment variables: 12-factor [https://12factor.net] configuration.

	Avoid different configurations for each environment.

	Decouple configurations with libraries like prettyconf.

	Configurations should control only the software behaviour. Business logic
configurations must be handled like system data; database-stored and
configured through an administrative interface.

	Configurations that frequently change are good candidates to leave
configuration files.

Security

Todo

create a chapter specific for security?

	Sensible and secret data must not be versioned with the code.

	Always follow and apply security patches.

	Dependencies must be kept up to date.

	Only use known and tested security methods and systems.

	Security measures shouldn’t be entangled with infrastructure.

	Handle HTTP errors with static pages to avoid exploits.

Libraries and APIs

Todo

Informations are temporarily in Portuguese but it will be
rewritten in English in final version of the document.

	Devem ter changelog.

	Mudar a versão (major) sempre que houver quebra de compatibilidade retroativa.

	Manter a versão anterior dentro de um plano de “deprecation” definido
previamente em cada projeto.

	O modelo de versionamento deve ser adotado consistentemente em todas as APIs
de um mesmo projeto.

	Documentação

	Todas as bibliotecas devem ser versionadas segundo as diretrizes de
versionamento semântico http://semver.org/ ignorando apenas os sufixos como:
pre, rc, alpha.
	Formato major.minor.patch;

	Todas as alterações devem ser acompanhadas pela atualização da versão.

	Manutenção de Changelog atualizado.
	Podemos usar como referência as Definições do Projeto GNU [https://www.gnu.org/prep/standards/html_node/Change-Logs.html].

6.2. E-Mail

Todo

write this

6.3. Database

Todo

write this

non-sequential ids, strings instead of enums

 7. Books

7. Books

Suggested reading list:

	Clean Code: A Handbook of Agile Software Craftsmanship [https://www.amazon.com.br/Clean-Code-Handbook-Software-Craftsmanship-ebook/dp/B001GSTOAM/], Robert C. Margin

	The Pragmatic Programmer: From Journeyman to Master [https://www.amazon.com.br/Pragmatic-Programmer-Journeyman-Master-ebook/dp/B003GCTQAE/], Andrew Hunt, David Thomas

	Building Microservices: Designing Fine-Grained Systems [https://www.amazon.com.br/Building-Microservices-Designing-Fine-Grained-Systems-ebook/dp/B00T3N7XB4/], Sam Newman

	Refactoring: Improving the Design of Existing Code [https://www.amazon.com/Refactoring-Improving-Design-Existing-Code/dp/0201485672/], Martin Fowler

 Index

Index

_images/plantuml-2c603e9528439351ca90b33d4050c593d267fa8d.png
queue

oo {zm)

topic

_static/down.png

_static/comment-bright.png

_static/file.png

_images/plantuml-5f68a27689bce8d76440a492103b70541ee6b8ff.png
message

_images/plantuml-4649ffd2a8b204009d387fdf4088450a64cb1b26.png

_images/plantuml-9648c3d4c9925b7ff3c1cf125ebdc2aa1406a570.png

_static/down-pressed.png

_static/up.png

_images/plantuml-2803d6df7b5081392e06c973f785536e8dcf7299.png
queuel

sm%el\fo
Q- g
©

source2

queue3

©

source3 queueN. target3

O

sourceN targeth

_static/comment.png

_images/plantuml-eb7543dfd069edc79e9066fc5ab78418bd77b513.png
component
storage

_static/comment-close.png

_images/plantuml-aa141e65d7fe1c6918147ce9e56a350b47f45d23.png

_static/plus.png

nav.xhtml

 Table of Contents

 		Development Guidelines

 		General Guidelines

 		Simplicity

 		Pragmatism

 		Quality

 		Craftsmanship

 		Processes & Practices

 		Business Orientation

 		Guideline Enhancement Proposal

 		Code Review

 		Pull Requests

 		Commit Messages

 		Pair Programming

 		Continuous Integration

 		Deployment

 		Continuous Deployment

 		Scheduled Maintenance

 		Service Unavailability and Disaster Recovery

 		References

 		APIs (WIP)

 		Design

 		Specification and Documentation

 		HTTP, REST and Web

 		Implementation

 		Denormalization and Data Sync

 		Common Solutions

 		References

 		API Design Guidelines

 		Articles

 		Architecture

 		General Rules

 		Minimal Dependencies

 		Auditability

 		Microservices (or SOA) Architecture

 		Building Blocks

 		Patterns

 		Integrations

 		References

 		Monitoring & Logging

 		Monitoring

 		Logging

 		Logging Errors

 		Log Format

 		Log Levels

 		Error Reporting

 		Exception Handling Service

 		Implementation

 		Code

 		General advices

 		Coding Style

 		Tests

 		Configuration

 		Security

 		Libraries and APIs

 		E-Mail

 		Database

 		Books

_static/up-pressed.png

_images/plantuml-57137e4a79fead1beda5fcf80642f0ddd0eafa9a.png

_static/minus.png

_static/ajax-loader.gif

_images/plantuml-70c9addf1d4224692